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ON STABILITY OF SELF-CONTAINED H~ILTONIAN SYSTEM 
WITH TWO DEGREES OF FREEDOM IN THE CASE OF ZERO FREQUENCIES* 

A.G. SOKOL'SKII 

The stability problem for a self-contained Hamiltonian system with two degrees of 
freedom is solved for the case in which the fundamental equation of the linearized 
system has four zero roots. 

1. Let us consider a self-contained Hamiltonian system with two degrees of freedom. 
Suppose the origin of the phase space corresponds to the equilibrium position of the system, 
and let the Hamiltonian function be analytic in some neighborhood of the equilibrium position, 

H = Ha + . . . i_ H, f . . . 

where the H,,, are homogeneous polynomials of degree m in generalized coordinates qh and mom- 
enta pR (k = 1, 2): 

Hm= x 
vl+v*+Wl+Lk=m 

bs+sp.d’q~pi’%= 

The Liapunov stability of such systems in a rigorous nonlinear formulation has now been 
studied for all possible cases (see /1,2/). other than the case of the fundamental equation 
with four zero roots (i.e., the case of two zero frequencies, or double first-order resonance). 
The present paper is devoted to a solution of this problem. AS an illustration, we consider 
the converse to the Lagrange-Dirichlet theorem. 

In accordance with procedures developed for studying alI the earlier cases, first we 
consider normalization of the linearized system corresponding to the quadratic part of the 
Hamiltonian function. For this purpose, we write the linearized system intheform 

dx I dt = Jhx, x = (PI, qa,pI, Pe)* (1.1) 

where 0,E are the zero and unitary matrices of corresponding orders. Then the normalization 
problem reduces to finding a nondegenerate, real, simplectic matrix N, such that the trans- 
formation 

x=lvx', x'= (Qll, Qa', PI’, Pz’)T 

reduces the linear system (1.1) to the form 

(1.2) 

(1.3) 

In fact normal forms for the quadratic Hamiftonians I&' for all possible types ofeigen- 
values of the matrix Jh were found by Williamson (see Appendix to /3/I, i.e., the relation 
between H,' and qd, pk’ is known. In our problem, in which all the eigenvalues of Jh are 
zero, depending on the rank of h the following cases may arise (a more complicated normal form 
has been presented /3/ for the case of general position rg h = 3): 

H8’ = ‘la6p,‘a - ql’qa’ (6 = *I), rg h = 3 (1.4) 
Hs’ = VgS,pl’= _t ‘la&pa’a (6, = fl, 6, = rtl), rgh = 2 (1.5) 

Ha’ - 1/,6p,‘r (6 = fl), rg h = 1 (1.6) 
Hz’=O, rgh=O (1.7) 

Note that there is as yet no normalization algorithms for the case of two or more zero 
frequencies. We propose here a constructive algorithm which be used to find normalizingtrans- 
formation matrices for all possible cases; our algorithm is also simpler than those previously 
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presented in the literature, (The complete set of linear normalization methods may be found 
in /l/ (*). 

The required matrix must first reduce the matrix Jh to the form Jh! i.e., JIzN ==.iVJh', 
second, it must be simplectic, i.e., 

NTJN = J (1.8) 

The solution Of the first equation exists if and only if the matrices Jh and Jh'have id- 
entical normal Jordan form /4/. Let G is the normal Jordan form of these matrices. Clearly, 
the matrix which reduces Jh to the normal Jordan form will not, in general, be simplectic,if 
for no other reason that only Jordan cells of order no higher than the first (with an even 
number of cells) may correspond to the same canonical system. However, the product of two 
nonsimplectic matrices may turn out to be a simplectic matrix. Accordingly, we seek the 
normalizing transformation matrix in the form N=AB. Here A is an arbitrary matrix which 
reduces Jhto the normal Jordan form, i.e., it is an arbitrary (but fixed) nondegenerate solu- 
tion of the equation JhA =AG composed of eigenvectors and adjoint vectors aj of the matrix 

Jh. The matrix B = C-l, where the matrix C reduces Jh’ to the same Jordan form G: Jh’C L= 
CG. In compiling C from the eigenvectors and adjoint vectors of Jh’, we retain all the 
arbitrary constants which normalize these vectors. Note that the matrices B may be found in 
advance for all known sets of eigenvalues. The obtained arbitrariness may now be used for 
obtaining N as a simplectic matrix. 

From (1.8) we also have the normalization relation 

BTFB = d (1.91 

where F -_ ATJA is a skew-symmetric matrix, since fj, = (a,, JQ = (JTa,, a,,) = - (a,, Jai) = -fnj. 
Further study of the structure of F is most easily performed for each case separately, in 
precisely the same way as in the case of simple eigenvalues (see /l/). Let us apply this 
simple idea to our problem. 

In the case rg h = 3,we have 

Jhal = 0, 6b2 b4 bs Bbl 

! 1 

0 0 0 hr (1.10) 
Jhaa = al, 6bE bs ba 0 0 

Jh+=a,, ‘= o bz bi 0 f F = : yxi -6 f‘& 

Jha4 = as, 0 61 0 0 / -fflr 0 --la 0 

where the bl are arbitrary real numbers (b, # 0), and jlr #O, since fm4 = det F = (det A)2 =#= U. 
Substituting the expressions for B and P in the normalization relation (l-9), we obtain 

equations for 6 and bj: 

6blafld = - 1, Z&b&e-b&a + Vfs = 0 

Setting, the sake of simplicity, b, = 6, = 0, we obtain the final expression for the 

normalizing matrix: 

N = II %,a,, b,a, + &a,, b,a, + b1a8, %a, /I 
6 = - sign (al, Ja& bl = 1 (al, Ja*) 1 -‘/z, b, = ‘/dbls (a,, Jad 

where a, (j = 1,2,3, 4) are arbitrary linearly independent solutions of equations (1.10). 
For the case rg h = 2 we find 

(1.11) Jha, = 0, 
Jha, = al, 
Jha, = 0, 

J‘ha, = as, 

B= i’ ;z6;i!b, , + F ,:’ ;;I 

1 z / 0 0 - irr ,, 

where fia # 0, fs4 # 0, since flaYa = det F = (det-4)' + 0. As in the preceding case we find from 

(1.9) and (1.11) equations for &, 6, and bj 

&b,%, ,== 1, 6,b,2f,, = 1 

*I See also Titova, T.N., Normalization of Hamiltonian Matrices. Dissertation Presented to 

the Senior School Candidate Competition in Physics and Mathematics. Moscow,Peoples Friendship 

University, 1978. 
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Setting, for simplicity, b, = b4 =0 we have the final expression 

N = II 01, baas, Wm, &baa4 II 
6 I= sign (al, Ja,), bl = 1 (al, Jas) j-‘l*, &2 = sign (a,, .!a& 
ba = 1 (a,, Jh) I-+ 

where aj is the solution of equations (1.11). 

Finally, for the case rg h = 1 

(1.12) 

and, as in the preceding case, f*z f 0, f54 f 0. Using the normalization condition, we obtain 
the final expression for the normalizing matrix: 

N = II b,al, baa,, 6b,a,, a4 II 
S = sign (al, Ja& b1= 1 (aI, Jae) I-‘4 be = 0 
bl = (aB, J&)-l, b4 = 1 

In the case rgh =0 normalization need not be performed , since it follows from the very 
condition rgh =O that all the coefficients of the quadratic part of the Hamiltonian are zero, 
further, and it is already of normal form (1.7). 

We further assume that a linear normalization has already been performed in the system 
and that the quadratic part of the Hamiltonian function has the form (1.4)-(1.7) forthecases 
fgh, = 3,2,1,0, respectively. Previous notation (without primes) will be used for the phase 
variables. 

2. Let us consider the stability problem for a complete nonlinear system in the general 
position case rg h = 3. For this purpose, in the complete system we perform using the De Pree- 
Hori method, a nonlinear normalization (*)(q~,p,,) +(Qk,pk) (k = 1,2) bywhichthenewHamiltonian 
function K = K, + . . . + K, + . . . assumes asimplerform.ByS = I!$~ f . ..+ 8, + ..wedenote the 
generating functionoftheDe Pree- Horimethod, obtainingforthe coefficients s,,,,,ofits formsS, 
andthecoefficients k,,,,,,ofthenewHamiltonianthesystemofalgebraicequations 

6 (VI + %l+l,v~,,*-l,k- (111 -I- 1) %I 4-l ptc* pr - (2.1) ( 

VI % 

+ + ; 

1 

+ ~ ,= m (~f=~~8\2-~~*,R,k+l=gUvil*B-~YIP~ 

2 ; , , . . . ) 

where &v2wue are the coefficients of the forms G, expressed in terms of the forms S,,, &, Iir, 
of lower orders; for example, Gs = fis, G4 = Ha -I- ?fa {S,, HB + K,} ({ , } arethePoissonbrackets1. 
The solution of equations (2.1) yields a normal form for the Hamiltonian function (through 
third-order terms): 

L( zz KW + K(1) 

K(O) = + 6 PIa - QlQa + hod’2 &moo = hooos) 
~(1) = k,l,BQsP,a + k,,,,P,P,’ + Ka i- . . . 

(2.2) 

(2.3) 

Theorem 2.1. If kOOOB # 0, the equilibrium position is unstable. 
To prove the theorem, we will first consider a truncated system with Hamiltonian function 

(2.3). It has the unstable particular solution 

QZ = aPi/*, Px = bP,^l+, Q8 = cP;J*, P, = P, (O)[l - At]-* (2.4) 
a = 4A [ZJ, (O)]-‘$ b = 20&Aa [P, (O)l-‘f*, 
c = 120&i* (P, {O)l-” 
A = ~Gkoo&‘s (0) I 28OW 

*) see Markeev, A.P. and Sokol'skii A-G., "Certain computational normalization algorithms for 
Hamiltonian systems. Preprint, Inst. Prikl. Matem. Akad. Nauk SSSR, No.31, 1976. 
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Note that the solution we have found for the system with Hamiltonian (2.3j infiniteiy 
increases in the finite time t- IP, (O)J-‘I* under arbitrarily infinitesimal initial conditions 
Pz(0), while the solutions of the linear system with Hamiltonian (1.4) may increase only by r: 
power law. Using this unstable particular solution of the truncated system and the Chetaev 
theorem /5/ let us prove that the complete system is unstable. As an exampie, we take 

as the Chetaev function. 
In the region V>O the following estimates are valid: 

It can be verified that the derivative of function V generated by means of equations of 
motion with Hamiltonian (2.2) are be positive definite in the region v>o. Consequently, 
by the Chetaev theorem, the equilibrium position is unstable and Theorem 2.1 is proved. 

Let us briefly discuss the degenerate case km8 = 0. Normalization in this case must 
be performed through fourth-order terms, and the normal form now appears as (2.2), where 

K(O) = + 6 Pla - Q&z + koo&Pz2 + koooaPz4 (2.6) 

Kc’) = km,Q&a + komQaP2 + koozzW~& kooxJ%P&- KB+ .-. 

We set d = koolza f 66kooop , and suppose d > 0. Then the truncatedsystemwithHamiltonian 
(2.6) has a particular solution analogous to the solution (2.4) 

As in the nondegenerate case kooog +O, therefore, we find that the equilibrium position 
is unstable when d>O . When d<O there is no analogous increasing solution of the 
truncated system and, apparently, the equilibrium position is Liapunov-stable. However, a 
rigorous proof of this assertion is not possible, since even the truncated system has no in- 
tegral other than K(O) which is analytic near zero. 

As an example of the application of the results of Sect.2 to actual mechanical probl.ems, 
we consider the stability problem for the conical precession of a dynamically symmetric satel- 
lite in circular orbit /6/. Suppose a=%,@=~ where a is the ratio of the polar and equat- 
orial moments of inertia of the satellite, and $ is the ratio of the projectionoftheabsolute 
angular velocity of the satellite on its axis of symmetry and the angular velocity of the 
center of mass f7/. With these parameters, the satellite will move forwardintoabsolute space, 
withits axis of symmetry perpendicular to the velocity vector of the center of mass, forming 
an arbitrary angle 6, with the normal to the orbital plane. 

In this case, the first terms of the expansion of the Hamiltonian function of perturbed 
motion in corresponding coordinates have the form /7/ 

(2.7) 
(2.8) 

The case 6,=fii3 in which the fundamental equation of the linear system with Hamiltonian 
function (2.7) and o*+(4c2-1)~z= 0 has four zero roots, while the rank of the corresponding 

matrix h is three was not studied in an earlier review /7/ of this problem. Using the algori- 
thm of Sect.1, we may find the linear normalizing transformation matrix: 

Passing to new variables in (2.8), we find the coefficient of the normal form (2.3) k,,,~= 

1/1/I$:O. It follows from Theorem 2.1 that the conical precession is unstable. 
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Still another interesting example of the application of our results has been presented 
previously(*kItalso turned out that ol= es=0 and rgh=3 in a study of the stability of 
the cylindrical precession of a symmetric satellite with values of the parameters c~=~/,,fi=V,. 
Reduction to normal. form showed that in (2.3) 6= 1,k,,,= 0, i.e., here we are dealing with a 

degenerate case. Further computations yield k,,= 0 and kooer=% Consequently, d= k&m+ 
66k,,,,>O, so that on the basis of the foregoing we are led to conclude that cylindrical. prec- 
ession is unstable. 

3. Let us consider the stability problem in the case rgh=2. In this case, to noramal- 
ize the nonlinear terms we use in place of equations (2.1) the following equations for deter- 
mining the coefficients of the generating function and the coefficients of the new Hamiltonian 
function: 

The solution of these equations yields a normal form for the Hamiltonian function (through 
third-order terms): 

note 

K = K(O) $ K(l), KC’) = K, + K&O), KU) = I&,(‘) + Ka + . , . (3.2) 

K$” = haoQ?+ kalQl'Qz+ h1zQ~Q2-k hosQ2 tLvd+soo= fi;,wo) (3.3) 

KP = k,,oQ,Qd', + 4lolQiQePa (3.4) 

Theorem 3.1. If hsoa + k,,Z + hIz2+ hos2f0, the equilibrium position is unstable. 
The theorem may be proved in the same way as the assertions of Sect.2. For this purpose, 
that when the condition of the theorem is satisifed (i.e., when at least one of the co- 

efficients of the form &(') is nonzerof,the truncated system with Hamiltonian K(O) admits of 
a particular solution of the form 

Q1= %‘O’ Qa 
Qs (0) 

(1 At)” ’ ==(Zq 
Pr =iz 2WQ1(@) 

(f - At)$ 

Pa = 2bAQeK') 
(1 -At)& 

A = (-6, 13~~oQ~a(0) i- 2&Qx @)Qs (0) t &aQs* @)I 1 t6Qr (O)lY" = f-Ba IhQ? WI + 
2k,,Q, (O)Q, (0) -t- 3ko,Q,B (0) lIIf3Q2. (W)"z 

(3.5) 

where QI(0)7 Qz(0) are eny simultaneously nonzero real numbers (they always exist; if, for ex- 
ample, k,, = 0, we take QI(UJ = 0 and Q1(0) will be an arbitrary nonzero number) that satisfy 
the relation 

6,k,,Q~(O) i- 126,h, - 3UdQ~ (O)Q1(0) - WM,, - 3@,olQ, @)QI" (0) - f&&Q? (0) = 0 

Using this increasing solution of the truncated system and selecting Q~(O),Q,(O)as small 
enough numbers, a Chetaev function of the complete system may be constructed analogous to the 
function (2.5). 

IZE the condition of Theorem 3.1 does not hold, normalization must be performed through 
terms of higher order, and in the general case, the procedure becomes highly complicated (see 
Sect. 4) due to the presence of terms of the form QfQePl, QIQnPa, . . . (proportional to P,,). 

The stability pxoblem for the cases rgh = 1 and rgh = 0 discussed above may be solved 
by combining the results of the present paper and previous results /2/. 

4. As an example of the use of earlier results , we will briefly consider the relation 
of these results to the well-known converse problem to the Lagrange-Dirichlet stability the- 
orem for a two-dimensioal conservative system. Note that this problem has been nearly com- 
pletely solved /5, 8-l&' (seealso /12, 13/j. However, the most complete recent results /9- 
111 were obtained by means of methods from optimal control theory and topology and donothave 
an explicit mechanical meaning. We would therefore like to solve this problem of mechanics 
using methods of analytic mechanics exclusively. 

Suppose we are given a conservative mechanical system with two degrees of freedom, where 
ql. pe are its Lagrangian coordinates and pl,pa the corresponding generaUsed momenta; the co- 
ordinate origin of the phase space is an isolated equilibrium position. The kinetic energy 
*) Sokol'skii, A-G. Stability problem for regular precessions of a symmetric satellite. 
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T = ‘la X [ajk+Tjk ((II, ~,)lP$+.: Tjk = T#j, t;, r(O, 0) = 0 

j, k-1 

where S,k is the Kronecker symbol, is a positive definite quadratic momentum form. Since the 
system is conservative, the forces affecting it are potential forces, while the potential 
energy (which is an analytic function of the Lagrangian coordinates in a neighborhood of the 
equilibrium position) has the form 

u (41, n,) = us-t-u, +..., u, = 2 ujrqj42k 14.1) 
j+t=m 

The perturbed motion equations may be written in canonical form with the Hamiltonian fun- 
ction H = T+ U. In this form, a Hamiltonian system possesses an important property that dis- 
tinguishes it from the general class of self-contained Hamiltonian systems (which, in general, 
may include gyroscopic forces) and also helps in its study. That is, the generalized momenta 
occur in the Hamiltonian function only quadratically. Under these conditions, the following 
assertion is true. 

Theorem (Lagrange-Dirichlet). The equilibrium position of the above system is 
stable if and only if the potential energy u(qf,q$) has a minimum at the equilibrium position, 
i.e., is a positive definite function of its variables ql, Q% in a neighborhood of the equili- 
brium position. 

The first part of this assertion constitutes the content of the original Lagrange- 
Dirichlet theorem proper, while the second part has been referred to as the converse to the 
Lagrange-Dirichlet theorem and has remained unproved for some time. 

Let us first consider the linearized system, writing it, as in /12/, in principal co- 
ordinates (without changingthe notation for the variables and noting that the quadraticdepend- 
ence of the Hamiltonian on the momenta is preserved). The Hamiltonian of such a linearsystem 
has the form 

a, = %Pl+ vzp2= -I- ‘f,C,ql” i- ‘ldh2 p, = */zc1(I;L f %Cfh~, cx> Cd 

Note that Ck= -uk’(k= 1,2), where ok are the roots of the fundamental equation. 
The following cases are possible: (a) C,<O; (b) C,= C,-0: (cf C1>Ca=o; (d) C,> C,>O. 

For cases (b)- (d), We introduce the nOtatiOn ck= @,where Wk are the frequencies of the linear 
oscillations. 

In case (a), the linear system is unstable due to the presence in the general solution of 
terms which increase exponentially with timet,i.e., the complete system is also unstable; in 
the two cases {b) and (cf. the linear system is unstable due to the presence of terms proport- 
ional to t"(n= 1,2,3) in the general solution, though we still cannot yet conclude that the 
complete system is unstable; and in case (d), both the linear and the complete systems are 
stable, as follows from the Liapunov stability theorem /14/ if we take a fixed-sign (in this 
case, positive definite) integral H= const as the Liapunov function. 

On the other hand, in case (a), the form lJZ is either negative definite (c;< C,(O), or 
is of negative sign (C,=O>C,f, or alternates in sign cc,>0 >C,),, i.e., the entire function 
(4.1) is nowhere positive definite. In case (d), (i, (that is, the entire function (4.1)) is 
positive definite. In case cc), CJ, has positive terms, i.e., depending on u,,c',,... (4.1) may 
be either positive definite or alternate in sign. In case (b), u,sO and is fully determined 

by us, u,, “. . 
Thus, in our study of stability cases ib) and (c) are special cases in which the forms 

N,, H,, . . . must be taken into account in the expansion of the Hamiltonian. In other words, we 
must considex the cases of one or two zero frequencies. 

Case (c) (the case of a single zero frequency op= O,o,=#=O) was considered quite exhaust- 
ively in /2/, which studied the stability of an arbitrary Hamiltonian system (i.e., gyroscopic 
forces are possible in the corresponding mechanical system, or the system is a generalized 
conservative system). In order to use these results, we need only make a single change in the 

proof of the corresponding Theorem 4.1 /2/: it is not the entire Hamiltonian function H- Ti- 

u which is normalized, but rather only its "potential part" U. Then the normal formofthe 

Hamiltonian iS 

K = (%pla + %qaQla) t- Wd',a + Q~,,M Q")+K(M)+KM+l+... 2 

where a,,m#O while K(M) gathers together all terms of order no greater than M in Qk. P&P 
but such that their order is greater than 2~ in t: under the substitution P,=.MPI*, QI= eRZQ'x. 
P, =c”P2*, Qe = 9Qz* /2/. Then by Theorem 4.1 /2/, we find that stability will hold only if ~%i 
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is an even number and %,&l>O* But if M is an odd number, or if M is even but a,,M<O,the 

equilibrium position is unstable. Clearly, the stability condition coincides with the fixed- 

sign condition on (4.1). Thus, the only case we have not studied when wp=O istheso-called 
transcendental case, in which *@,w=O for all M= 3,4,... (such a situation is found when, fox 

example, the coordinate ps is an ignorable coordinate). However, we cannot conclude thatthe 
function (4.1) has (or does not have) an extremum in this case. 

Finally, let us consider case (b): ol=og=O, using the results of Sect. 3 of the pres- 

ent paper. 
Clearly, Theorem 3.1 is entirely in agreement with the assertions of the Lagrange- 

Dirichlet theorem we have been considering, since any third-order term (and any analytic fun- 
ction whose expansion starts with this form) is of alternating sign. Further, in (3.21, the 
terms (3.4) are missing in the case of a conservative system due to the quadratic dependence 
of the Hamiltonian on the momenta. It is therefore difficult to extend Theorem 3.1 to the 
case in which the expansion of (4.1) starts with any form V,,, of odd degree m or in which m 
is an even number, but U,,, is of alternating sign or negative definite (has negative terms). 
In all these cases, it is possible to find an unstable particular solution (such as (3.5)) of 
the truncated system, an d then construct a Chetaev function of the form of (2.5) for the com- 
plete system. The procedure will be more complicated if the expansion of (4.1) starts with 
the form U, of positive sign. In this case, the function K to) from (3.2) must include not 
only &,, but also terms from forms U,, of higher order, which results in the function be- 
coming either positive definite (then, by the Liapunov theorem, the equilibrium position is 
stable) or of alternating sign. In the latter case, instability will occur, though this can 
be proved not by finding particular solutions such as (3.51, but rather, as in /15/, by study- 
ing the case 0% = 30~ and 1 ceo + 3~ + 9cDB 1 = 3 [3 (A,,2 + B,,*)]'/*. 

The author thanks A.P. Markeev for valuable suggestions, and also the participants and 
leader of the Rumyantsev's seminar for discussing this paper. 
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